Total Tayangan Halaman

Kamis, 27 Oktober 2011

Pengertian Listrik



Petir adalah contoh listrik alami yang paling dramatis
Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut:
  • Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya.
  • Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif.
Bersama dengan magnetisme, listrik membentuk interaksi fundamental yang dikenal sebagai elektromagnetisme. Listrik memungkinkan terjadinya banyak fenomena fisika yang dikenal luas, seperti petir, medan listrik, dan arus listrik. Listrik digunakan dengan luas di dalam aplikasi-aplikasi industri seperti elektronik dan tenaga listrik.

Sifat-sifat listrik

Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frase "jumlah listrik" digunakan juga dengan frase "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.
Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "C". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb".
Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam).
Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik..

Berkawan dengan listrik

Aliran listrik mengalir dari saluran positif ke saluran negatif. Dengan listrik arus searah jika kita memegang hanya kabel positif (tapi tidak memegang kabel negatif), listrik tidak akan mengalir ke tubuh kita (kita tidak terkena strum). Demikian pula jika kita hanya memegang saluran negatif.
Dengan listrik arus bolak-balik, Listrik bisa juga mengalir ke bumi (atau lantai rumah). Hal ini disebabkan oleh sistem perlistrikan yang menggunakan bumi sebagai acuan tegangan netral (ground). Acuan ini, yang biasanya di pasang di dua tempat (satu di ground di tiang listrik dan satu lagi di ground di rumah). Karena itu jika kita memegang sumber listrik dan kaki kita menginjak bumi atau tangan kita menyentuh dinding, perbedaan tegangan antara kabel listrik di tangan dengan tegangan di kaki (ground), membuat listrik mengalir dari tangan ke kaki sehingga kita akan mengalami kejutan listrik ("terkena strum").
Daya listrik dapat disimpan, misalnya pada sebuah aki atau batere. Listrik yang kecil, misalnya yang tersimpan dalam batere, tidak akan memberi efek setrum pada tubuh. Pada aki mobil yang besar, biasanya ada sedikit efek setrum, meskipun tidak terlalu besar dan berbahaya. Listrik mengalir dari kutub positif batere/aki ke kutub negatif.
Sistem listrik yang masuk ke rumah kita, jika menggunakan sistem listrik 1 fase, biasanya terdiri atas 3 kabel:
Pertama adalah kabel fase (berwarna merah) yang merupakan sumber listrik bolak-balik (fase positif dan fase negatif berbolak-balik terus menerus). Kabel ini adalah kabel yang membawa tegangan dari pembangkit tenaga listrik (PLN misalnya); kabel ini biasanya dinamakan kabel panas (hot), dapat dibandingkan seperti kutub positif pada sistem listrik arus searah (walaupun secara fisika adalah tidak tepat).
Kedua adalah (berwarna hitam) kabel netral. Kabel ini pada dasarnya adalah kabel acuan tegangan nol, yang disambungkan ke tanah di pembangkit tenaga listrik, pada titik-titik tertentu (pada tiang listrik) jaringan listrik dipasang kabel netral ini untuk disambungkan ke ground terutama pada trafo penurun tegangan dari saluran tegangan tinggi tiga jalur menjadi tiga jalur fase ditambah jalur ground (empat jalur) yang akan disalurkan kerumah-rumah atau kelainnya.
Untuk mengatasi kebocoran arus listrik dari peralatan tiap rumah dipasang kabel grund (berwarna hitam) dihubungkan dengan logam yang ditancapkan ditanah untuk disatukan dengan saluran kabel netral dari jala listrik dipasang pada jarak terdekat dengan alat meteran listrik atau dekat dengan sikring.
Dalam kejadian-kejadian badai listrik luar angkasa (space electrical storm) yang besar, ada kemungkinan arus akan mengalir dari acuan tanah yang satu ke acuan tanah lain yang jauh letaknya. Fenomena alami ini bisa memicu kejadian mati lampu berskala besar.
Ketiga adalah kabel tanah atau Ground (berwarna biru, hijau selain warna hitam dan merah). Kabel ini adalah acuan nol di lokasi pemakai, yang disambungkan ke tanah (ground) di rumah pemakai, kabel ini benar-benar berasal dari logam yang ditanam di tanah di rumah kita, kabel ini merupakan kabel pengamanan yang disambungkan ke badan (chassis) alat2 listrik di rumah untuk memastikan bahwa pemakai alat tersebut tidak akan mengalami kejutan listrik.
Kabel ketiga ini jarang dipasang dirumah-rumah penduduk, pastikan teknisi (instalatir) listrik anda memasang kabel tanah (ground) pada sistem listrik di rumah. Pemasang ini penting, karena merupakan syarat mutlak bagi keselamatan anda dari bahaya kejutan listrik yang bisa berakibat fatal dan juga beberapa alat-alat listrik yang sensitif tidak akan bekerja dengan baik jika ada induksi listrik yang muncul di chassisnya (misalnya karena efek arus Eddy).

Unit-unit listrik SI

edit Unit-unit elektromagnetisme SI
Simbol Nama kuantitas Unit turunan
Unit dasar
I Arus ampere A A
Q Muatan listrik, Jumlah listrik coulomb C A·s
V Perbedaan potensial volt V J/C = kg·m2·s−3·A−1
R, Z Tahanan, Impedansi, Reaktansi ohm Ω V/A = kg·m2·s−3·A−2
ρ Ketahanan ohm meter Ω·m kg·m3·s−3·A−2
P Daya, Listrik watt W V·A = kg·m2·s−3
C Kapasitansi farad F C/V = kg−1·m−2·A2·s4

Elastisitas reciprocal farad F−1 V/C = kg·m2·A−2·s−4
ε Permitivitas farad per meter F/m kg−1·m−3·A2·s4
χe Susceptibilitas listrik (dimensionless) - -

Konduktansi, Admitansi, Susceptansi siemens S Ω−1 = kg−1·m−2·s3·A2
σ Konduktivitas siemens per meter S/m kg−1·m−3·s3·A2
H Medan magnet, Kekuatan medan magnet ampere per meter A/m A·m−1
Φm Flux magnet weber Wb V·s = kg·m2·s−2·A−1
B Kepadatan medan magnet, Induksi magnet, Kekuatan medan magnet tesla T Wb/m2 = kg·s−2·A−1

Reluktansi ampere-turns per weber A/Wb kg−1·m−2·s2·A2
L Induktansi henry H Wb/A = V·s/A = kg·m2·s−2·A−2
μ Permeabilitas henry per meter H/m kg·m·s−2·A−2
χm Susceptibilitas magnet (dimensionless) - -

 Sejarah Listrik

Sejarah awal ditemukannya listrik adalah oleh seorang cendikiawan Yunani yang bernama Thales, yang mengemungkakan fenomena batu ambar yang bila digosok - gosokkan akan dapat menarik bulu sebagai fenomena listrik. Kemudian setelah bertahun - tahun semenjak ide Thales dikemukakan, baru kemudian muncul lagi penapat - pendapat serta teori -teori baru mengenai listrik seperti yang diteliti dan dikemukakan oleh William Gilbert, Joseph priestley, Charles De Coulomb, AmpereMichael Farraday, Oersted, dll.

informasi tentang sejarah penemu listrik ini disajikan dalam bentu panel dan didukung dengan perangkat audio visual yang menyajikan tiruan dari percobaan - percobaan yang pernah dilakukan oleh para ilmuan.

Ben Franklin
Banyak orang berpikir Benyamin Franklin menemukan listrik terkenal dengan layang-layang percobaan pada 1752, namun
listrik tidak ditemukan sekaligus. Pada awalnya, listrik dikaitkan dengan cahaya.
Orang ingin yang murah dan aman cara untuk cahaya rumah mereka, dan para ilmuwan berpikir listrik mungkin jalan.

Baterai

Belajar bagaimana memproduksi dan menggunakan listrik tidak mudah. Untuk waktu yang lama ada
ada sumber diandalkan listrik untuk percobaan. Akhirnya, pada tahun 1800, Alessandro Volta, seorang ilmuwan Italia, membuat penemuan besar. dia basah kuyup
kertas dalam air garam, seng dan tembaga ditempatkan di sisi berlawanan dari kertas, dan mengamati reaksi kimia menghasilkan arus listrik. Volta telah
menciptakan sel listrik pertama. Dengan menghubungkan banyak dari sel-sel ini bersama-sama, Volta mampu "string saat ini" dan membuat baterai. Hal ini untuk menghormati Volta bahwa kita mengukur daya baterai dalam volt. Akhirnya, sumber yang aman dan dapat diandalkan listrik tersedia, sehingga mudah bagi para ilmuwan untuk mempelajari listrik.

Seorang ilmuwan Inggris, Michael Faraday, adalah orang pertama yang menyadari bahwa
arus listrik dapat dihasilkan dengan melewatkan magnet melalui
kawat tembaga. Itu adalah penemuan yang menakjubkan. Hampir semua listrik
kita gunakan saat ini dibuat dengan magnet dan kumparan dari kawat tembaga di raksasa
pembangkit listrik.
Kedua generator listrik dan motor listrik didasarkan pada ini
prinsip. Sebuah generator mengubah energi gerak menjadi listrik. Sebuah
Motor mengubah energi listrik menjadi energi gerak.


Thomas Edison
n 1879, Thomas Edison
berfokus pada menciptakan suatu
Cahaya lampu, yang
akan bertahan lama sebelum
terbakar. Masalahnya adalah
menemukan bahan yang kuat untuk
filamen, kawat kecil
di dalam bohlam yang melakukan
listrik. Akhirnya, Edison digunakan
biasa kapas benang yang
telah direndam dalam karbon.
Filamen ini tidak terbakar sama
semua itu menjadi pijar;
yaitu, ia bersinar.

Tantangan berikutnya adalah mengembangkan sistem listrik yang dapat
menyediakan orang dengan sumber praktis energi untuk daya ini baru
lampu. Edison ingin cara untuk membuat listrik praktis dan
murah. Dia dirancang dan dibangun pembangkit listrik pertama yang
mampu menghasilkan listrik dan membawanya ke rumah-rumah penduduk.
Edison Pearl Street Power Station dimulai generator yang pada
September 4, 1882, di New York City. Sekitar 85 pelanggan di bawah
Manhattan menerima daya yang cukup untuk menyalakan lampu 5.000. nya
pelanggan membayar banyak untuk listrik mereka, meskipun. Dolar di hari ini,
listrik biaya $ 5,00 per kilowatt-jam! Saat ini, biaya listrik
sekitar 12 sen per kilowatt-jam untuk pelanggan perumahan, dan
sekitar 7 sen per kilowatt-jam untuk industri.

AC/DC
Titik balik dari usia listrik datang beberapa tahun kemudian dengan
perkembangan AC (alternating current) sistem tenaga. dengan
arus bolak-balik, pembangkit listrik bisa mengangkut banyak listrik
jauh dari sebelumnya. Pada tahun 1895, George Westinghouse membuka pertama
pembangkit listrik utama di Niagara Falls menggunakan alternating current. sementara
Edison DC (arus searah) tanaman hanya dapat mengangkut listrik
dalam satu mil persegi nya Pearl Street Power Station, Niagara
Tanaman jatuh mampu mengangkut listrik lebih dari 200 mil!
Listrik tidak memiliki awal yang mudah. Banyak orang
senang dengan semua penemuan baru, tetapi beberapa orang takut
listrik dan waspada membawa ke rumah mereka. banyak sosial
kritikus hari melihat listrik sebagai mengakhiri cara, sederhana kurang sibuk
kehidupan. Penyair berkomentar bahwa lampu listrik kurang romantis daripada
lampu gas. Mungkin mereka benar, tetapi usia listrik baru bisa
tidak redup.
Pada tahun 1920, hanya dua persen dari energi di AS digunakan untuk membuat
listrik. Hari ini, sekitar 41 persen dari seluruh energi yang digunakan untuk membuat
listrik. Seperti kami menggunakan teknologi tumbuh, angka itu akan terus
meningkat.

Sejarah Listrik dan Perkembangannya di Indonesia

Sejarah Ketenagalistrikan di Indonesia dimulai pada akhir abad ke-19, ketika beberapa perusahaan Belanda mendirikan pembangkit tenaga listrik untuk keperluan sendiri. Pengusahaan tenaga listrik tersebut berkembang menjadi untuk kepentingan umum, diawali dengan perusahaan swasta Belanda yaitu NV. NIGM yang memperluas usahanya dari hanya di bidang gas ke bidang tenaga listrik.
Selama Perang Dunia II berlangsung, perusahaan-perusahaan listrik tersebut dikuasai oleh Jepang dan setelah kemerdekaan Indonesia, tanggal 17 Agustus 1945, perusahaan-perusahaan listrik tersebut direbut oleh pemuda-pemuda Indonesia pada bulan September 1945 dan diserahkan kepada Pemerintah Republik Indonesia.
Pada tanggal 27 Oktober 1945, Presiden Soekarno membentuk Jawatan Listrik dan Gas, dengan kapasitas pembangkit tenaga listrik saat itu sebesar 157,5 MW.
Tanggal 1 Januari 1961, Jawatan Listrik dan Gas diubah menjadi BPU-PLN (Badan Pimpinan Umum Perusahaan Listrik Negara) yang bergerak di bidang listrik, gas dan kokas.
Tanggal 1 Januari 1965, BPU-PLN dibubarkan dan dibentuk 2 perusahaan negara yaitu Perusahaan Listrik Negara (PLN) yang mengelola tenaga listrik dan Perusahaan Gas Negara (PGN) yang mengelola gas. Saat itu kapasitas pembangkit tenaga listrik PLN sebesar 300 MW.
Tahun 1972, Pemerintah Indonesia menetapkan status Perusahaan Listrik Negara sebagai Perusahaan Umum Listrik Negara (PLN). Tahun 1990 melalui Peraturan Pemerintah No. 17, PLN ditetapkan sebagai pemegang kuasa usaha ketenagalistrikan.
Tahun 1992, pemerintah memberikan kesempatan kepada sektor swasta untuk bergerak dalam bisnis penyediaan tenaga listrik. Sejalan dengan kebijakan di atas, pada bulan Juni 1994 status PLN dialihkan dari Perusahaan Umum menjadi Perusahaan Perseroan (Persero).
Perkembangan PLN
setelah terbentuk menjadi persero di tahun 1992, PT. PLN (persero) memiliki beberapa aktifitas bisnis, antara lain:
1. Di bidang Pembangkitan listrik
Pada akhir tahun 2003 daya terpasang pembangkit PLN mencapai 21.425 MW yang tersebar di seluruh Indonesia.
Kapasitas pembangkitan sesuai jenisnya adalah sebagai berikut :
- Pembangkit Listrik Tenaga Air (PLTA), 3.184 MW
- Pembangkit Listrik Tenaga Diesel (PLTD), 3.073 MW
- Pembangkit Llistrik Tenaga Uap (PLTU), 6.800 MW
- Pembangkit Listrik Tenaga Gas (PLTG), 1.748 MW
- Pembangkit Listrik Tenaga Gas dan Uap (PLTGU), 6.241 MW
- Pembangkit Listrik Tenaga Panas Bumi (PLTP), 380 MW
2. Di bidang Transmisi dan Distribusi Listrik
Di Jawa-Bali memiliki Sistem Interkoneksi Transmisi 500 kV dan 150 kV sedangkan di luar Jawa-Bali PLN menggunakan sistem Transmisi yang terpisah dengan tegangan 150 kV dan 70 kV.
Pada akhir tahun 2003, total panjang jaringan Transmisi 500 kV, 150 kV dan 70 kV mencapai 25.989 kms, jaringan Distribusi 20 kV (JTM) sepanjang 230.593 kms dan Jaringan Tegangan Rendah (JTR) sepanjang 301.692 kms.
Sistem Kontrol
Pengaturan daya dan beban Sistem Ketenagalistrikan di Jawa-Bali dan supervisi pengoperasian sistem 500 kV secara terpadu dilaksanakan oleh Load Dispatch Center / Pusat Pengatur Beban yang terletak di Gandul, Jakarta Selatan. Pengaturan operasi sistem 150 kV dilaksanakan oleh Area Control Center yang berada di bawah pengendalian Load Dispatch Center. Di Sistem Jawa-Bali terdapat 4 Area Control Center masing-masing di Region Jakarta dan Banten, Region Jawa Barat, Region Jawa Tengah & DI Yogyakarta dan Region Jawa Timur & Bali.
Cakupan operasi PLN sangat luas meliputi seluruh wilayah Indonesia yang terdiri lebih dari 13.000 pulau.
Dalam perkembangannya, PT PLN (Persero) telah mendirikan 6 Anak Perusahaan dan 1 Perusahaan Patungan yaitu :
* PT Indonesia Power; yang bergerak di bidang pembangkitan tenaga listrik dan
usaha-usaha lain yang terkait, yang berdiri tanggal 3 Oktober 1995 dengan
nama PT PJB I dan baru tanggal 1 September 2000 namanya berubah menjadi
PT Indonesia Power.
* PT Pembangkitan Jawa Bali (PT PJB) ; bergerak di bidang pembangkitan tenaga
listrik dan usaha-usaha lainyang terkait dan berdiri tanggal 3 Oktober 1995
dengan nama PT PJB II dantanggal 22 September 2000, namanya berubah
menjadi PT PJB.
* Pelayanan Listrik Nasional Batam (PT PLN Batam); yang bergerak dalam usaha
penyediaan tenaga listrik bagi kepentingan umum di Wilayah Pulau Batam,
didirikan tanggal 3 Oktober 2000.
* PT Indonesia Comnets Plus, yang bergerak dalam bidang usaha telekomunikasi
didirikan tanggal 3 Oktober 2000.
* PT Prima Layanan Nasional Enjiniring ( PT PLN Enjiniring), bergerak di bidang
Konsultan Enjiniring, Rekayasa Enjiniring dan Supervisi Konstruksi, didirikan
pada tanggal 3 Oktober 2002.
* Pelayanan Listrik Nasional Tarakan (PT PLN Tarakan), bergerak dalam usaha
penyediaan tenaga listrik bagi kepentingan umum di wilayah Pulau Tarakan.
* Geo Dipa Energi, perusahaan patungan PLN – PERTAMINA yang
bergerak di bidang Pembangkit Tenaga Listrik terutama yang menggunakan
energi Panas Bumi.
Sebagai Perusahaan Perseroan Terbatas, maka Anak Perusahaan diharapkan dapat bergerak lebih leluasa dengan antara lain membentuk Perusahaan Joint Venture, menjual Saham dalam Bursa Efek, menerbitkan Obligasi dan kegiatan-kegiatan usaha lainnya. Di samping itu, untuk mengantisipasi Otonomi Daerah, PLN juga telah membentuk Unit Bisnis Strategis berdasarkan kewilayahan dengan kewenangan manajemen yang lebih luas.
Konsumsi listrik di Indonesia
Konsumsi listrik Indonesia secara rata rata adalah 473 kWh/kapita pada 2003. Angka ini masih tergolong rendah dibandingkan rata rata konsumsi listrik dunia yang mencapai 2215 kWh/kapita (perkiraan 2005). Dalam daftar yang dikeluarkan oleh The World Fact Book, Indonesia menempati urutan 154 dari 216 negara yang ada dalam daftar.
Menurut koran Sindo hari Senin tanggal 9 Juni 2008 halaman 5, daftar konsumsi listrik perdaerah di Indonesia adalah (dalam satuan kWh/kapita):
1. Jakarta dan Tangerang: 1873.9
2. Sumatra Utara: 390.78
3. NAD: 206.06
4. Bali: 619.26
5. Sumatra Barat: 375.83
6. Jawa Tengah: 343.84
7. Kalimantan Selatan: 306.14
8. DIY: 398.77
9. Jawa Timur: 500.73
10. Sulawesi Selatan: 281.58
11. Sulawesi Utara: 290.78
12. Jawa Barat: 621.4
13. Banten: 1293.76
14. Maluku: 176.08
15. Kalimantan Timur: 461.7
16. Kalimantan Barat: 214.45
17. Bengkulu: 176.44
18. Bangka Belitung: 278.02
19. Sulawesi Tengah: 146.14
20. Sumatra Selatan: 256.45
21. Kalimantan Tengah: 195.87
22. Maluku Utara: 127.54
23. Lampung: 208.31
24. Gorontalo: 134.78
25. Sulawesi Tenggara: 120.22
26. Jambi: 213.91
27. Sulawesi Barat: 79.78
28. Riau: 274.21
29. NTB: 119.27
30. Papua: 180.11
31. NTT: 64.32

Teori Dasar Listrik


1. Arus Listrik

adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.

Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.



Gambar 1. Arah arus listrik dan arah gerakan elektron.

“1 ampere arus adalah mengalirnya elektron sebanyak 624x10^16 (6,24151 × 10^18) atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor”
Formula arus listrik adalah:

I = Q/t (ampere)

Dimana:
I = besarnya arus listrik yang mengalir, ampere
Q = Besarnya muatan listrik, coulomb
t = waktu, detik

2. Kuat Arus Listrik

Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.

Definisi : “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”.

Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:

Q = I x t
I = Q/t
t = Q/I

Dimana :
Q = Banyaknya muatan listrik dalam satuan coulomb
I = Kuat Arus dalam satuan Amper.
t = waktu dalam satuan detik.

“Kuat arus listrik biasa juga disebut dengan arus listrik”

“muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik”
3. Rapat Arus

Difinisi :
“rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”.



Gambar 2. Kerapatan arus listrik.

Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² (12A/4 mm²), ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm² (12A/1,5 mm²).

Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA).



Tabel 1. Kemampuan Hantar Arus (KHA)

Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil.

Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat:

J = I/A
I = J x A
A = I/J

Dimana:
J = Rapat arus [ A/mm²]
I = Kuat arus [ Amp]
A = luas penampang kawat [ mm²]


4. Tahanan dan Daya Hantar Penghantar

Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan.

Tahanan didefinisikan sebagai berikut :

“1 Ω (satu Ohm) adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C"

Daya hantar didefinisikan sebagai berikut:

“Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”.

Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus:

R = 1/G
G = 1/R

Dimana :
R = Tahanan/resistansi [ Ω/ohm]
G = Daya hantar arus /konduktivitas [Y/mho]



Gambar 3. Resistansi Konduktor

Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm.

“Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ρ (rho), maka tahanan penghantar tersebut adalah” :

R = ρ x l/q

Dimana :
R = tahanan kawat [ Ω/ohm]
l = panjang kawat [meter/m] l
ρ = tahanan jenis kawat [Ωmm²/meter]
q = penampang kawat [mm²]

faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada :
• panjang penghantar.
• luas penampang konduktor.
• jenis konduktor .
• temperatur.

"Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar"


5. potensial atau Tegangan

potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt.

“Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb”

Formulasi beda potensial atau tegangan adalah:

V = W/Q [volt]

Dimana:
V = beda potensial atau tegangan, dalam volt
W = usaha, dalam newton-meter atau Nm atau joule
Q = muatan listrik, dalam coulomb


RANGKAIAN LISTRIK

Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut :
1. Adanya sumber tegangan
2. Adanya alat penghubung
3. Adanya beban



Gambar 4. Rangkaian Listrik.

Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup.

1. Cara Pemasangan Alat Ukur.
Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil.

“alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter”
2. Hukum Ohm
Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus :

I = V/R
V = R x I
R = V/I

Dimana;
I = arus listrik, ampere
V = tegangan, volt
R = resistansi atau tahanan, ohm

• Formula untuk menghtung Daya (P), dalam satuan watt adalah:
P = I x V
P = I x I x R
P = I² x R

3. HUKUM KIRCHOFF

Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol (ΣI=0).



Gambar 5. loop arus“ KIRChOFF “

Jadi:
I1 + (-I2) + (-I3) + I4 + (-I5 ) = 0
I1 + I4 = I2 + I3 + I5

semoga bermanfaat,

1 komentar: